
Translation Caching:
Skip, Don’t Walk (The Page Table)

Thomas W. Barr, Alan L. Cox, Scott Rixner
Rice Computer Architecture Group, Rice University

International Symposium on Computer Architecture, June 2010



rice computer architecture group - 2

Virtual Memory: An increasing challenge

- Virtual memory

- Performance overhead 5-14% for “typical” applications. 
[Bhargava08]

- 89% under virtualization! [Bhargava08]

- Overhead comes primarily from referencing the in-memory 
page table

- MMU Cache

- Dedicated cache to speed access to parts of page table



rice computer architecture group - 3

Overview

- Background

- Why is address translation slow?

- How MMU Caching can help

- Design and comparison of MMU Caches

- Systematic exploration of design space

- Previous designs

- New, superior point in space

- Novel replacement scheme

- Revisiting previous work

- Comparison to Inverted Page Table



rice computer architecture group - 4

Why is Address Translation Slow?

- Four-level Page Table

0x5c8315cc1016



rice computer architecture group - 5

MMU Caching

- Upper levels of page table correspond to large regions of 
virtual memory

- Should be easily cached

- MMU does not have access to L1 cache

- MMU Cache: Caches upper level entries (L4, L3, L2)



rice computer architecture group - 6

MMU Caching

- In production

- AMD and Intel

- Design space

- Tagging

- Page table/Translation

- Organization

- Split/Unified

- Previous designs not optimal

- Unified translation cache (with 
modified replacement scheme) 
outperforms existing devices

UPTC UTC

SPTC STC

tagging

o
rg

a
n

iza
tio

n



rice computer architecture group - 7

Page table caches

- Simple design

- Data cache

- Entries tagged by physical 
address of page table entry

- Page walk unchanged

- Replace memory accesses with 
MMU cache accesses

- Three accesses/walk

PTE address pointer

0x23410 0xabcde

0x55320 0x23144

0x23144 0x55320

... ...

... ...

... ...

{0b9, 00c, 0ae, 0c1, 016} 



rice computer architecture group - 8

Translation caches

- Alternate tag

- Tag by virtual address 
fragment

- Smaller

- 27 bits vs. 49 bits

- Skip parts of page walk

- Skip to bottom of tree

{0b9, 00c, 0ae, 0c1, 016} 

(L4, L3, L2 indices) pointer

(0b9, 00c, 0ae) 0xabcde

(0b9, 00c, xxx) 0x23410

(0b9, xxx, xxx) 0x55320

... ...

... ...

... ...



rice computer architecture group - 9

Cache tagging comparison

SPEC CPU2006 Floating Point Suite



rice computer architecture group - 10

Split vs. Unified Caches

- Hash joins

- Reads to many gigabyte table nearly completely random

- Vital to overall DMBS performance [Aliamaki99]

- Simulate with synthetic trace generator

- MMU cache performance

- 16 gigabyte hash table

- 1 L4 entry

- 16 L3 entries

- 8,192 L2 entries

- Low L2 hit rate leads to “level conflict” in unified caches

- Solve by splitting caches or using a smarter replacement scheme



rice computer architecture group - 11

Split vs. Unified Caches



rice computer architecture group - 12

Level Conflict in Unified Caches

- LRU replacement

- Important for high-locality 
applications

- Avoid replacing upper level 
entries

- After every L3 access, must 
be one L2 access

- Each L3 entry pollutes the 
cache with at least one 
unique L2 entry



rice computer architecture group - 13

Split vs. Unified Caches

- Split caches

- Split caches have one cache per 
level

- Protects entries from upper 
levels

- Intel's Paging Structure Cache

Type

L4

Type

L3

L3

Type

L2

L2



rice computer architecture group - 14

Split vs. Unified Caches

- Problem: Size allocation

- Each level large?

- Die area

- Each level small?

- Hurts performance for all 
applications

- Unequal distribution?

- Hurts performance for particular 
applications

Type

L4

Type

L3

L3

Type

L2

L2



rice computer architecture group - 15

Variable insertion point LRU replacement

- Modified LRU

- Preserve entries with low reuse 
for less time

- Insert them below the MRU slot

- VI-LRU

- Novel scheme

- Vary insertion point based on 
content of cache

- If L3 entries have high reuse, 
give L2 entries less time

Entry Type

L2

L3

L4

L2

L3



rice computer architecture group - 16

Variable insertion point LRU replacement



rice computer architecture group - 17

Page Table Formats

- In the past, radix table implementations required four 
memory references per TLB miss

- Many proposed data structure solutions to replace format

- Reduces memory references/miss

- This situation has changed

- MMU cache is a hardware solution

- Also reduces memory references

- Revisit previous work

- Competing formats are not as attractive now



rice computer architecture group - 18

Inverted page table

- Inverted (hashed) page table

- Flat table, regardless of key (virtual address) size

- Best case lookup is one

- Average increases as hash collisions occur

- 1.2 accesses / lookup for half full table [Knuth98]

- Radix vs. inverted page table

- IPT poorly exploits spatial locality in processor data cache

- Increases DRAM accesses/walk by 400% for SPEC in 
simulation



rice computer architecture group - 19

Inverted page table



rice computer architecture group - 20

Inverted page table

- IPT compared to cached radix table

- Number of memory accesses similar (≈1.2)

- Number of DRAM accesses increased 4x

- SPARC TSB, Clustered Page Table, etc.

- Similar results

- Caching makes performance proportional to size

- Translations / L2 cache

- Consecutive translations / cache line

- New hardware changes old “truths”

- Replace complex data structures with simple hardware



rice computer architecture group - 21

Conclusions

- Address translation will continue to be a problem

- Up to 89% performance overhead
- First design space taxonomy and evaluation of MMU caches

- Two-dimension space

- Translation/Page Table Cache

- Split/Unified Cache

- 4.0 → 1.13 L2 accesses/TLB miss for current design

- Existing designs are not ideal

- Tagging

- Translation caches can skip levels, use smaller tags

- Partitioning

- Novel VI-LRU allows partitioning to adapt to workload


