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Virtual Memory: An increasing challenge

= Virtual memory

= Performance overhead 5-14% for “typica
[Bhargava08]

= 89% under virtualization! [Bhargava08]

= Overhead comes primarily from referencing the in-memory
page table

= MMU Cache
= Dedicated cache to speed access to parts of page table

I”

applications.
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Overview

= Background
= Why is address translation slow?

= How MMU Caching can help
= Design and comparison of MMU Caches
= Systematic exploration of design space

= Previous designs

= New, superior point in space

= Novel replacement scheme
= Reuvisiting previous work

= Comparison to Inverted Page Table
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Why is Address Translation Slow?

= Four-level Page Table

Ox5c8315cclol6

{0b9, 0O0c, Oae, Ocl, 016}

l ¥ L3 table at 042 1
L4 table at 613 L1 table at 508
L2 table at 125

—> {484, 016}
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Table base

MMU Caching

L3 table at 042

Mext

Index

L1 table at 508

L4 table at 613

L2 table at 125

613

00c 125 0c1 484
0b9 042 00d 3af 0c2 123
Oba (none) |GB Oae 508 I 0c3 978
512GB Qaf | {none) 4KB
2MB
< >
high reuse low reuse

= Upper levels of page table correspond to large regions of
virtual memory

Shou

d be easily cached

MMLU

does not have access to L1 cache

= MMU Cache: Caches upper level entries (L4, L3, L2)
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MMU Caching

= In production
= AMD and Intel
= Design space

= Tagging
- Page table/Translation

tagging

= Organization
- Split/Unified :
= Previous designs not optimal >PTe >1C

Unified translation cache (with
modified replacement scheme)
outperforms existing devices

uoilbziupbb.ao
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Page table caches

{0b9, 00c, Oae, Oc1, 016} = Simple design

PTE address pointer - Data cache

0x23410 Oxabcde = Entries tagged by physical

0x55320 0x23144 address of page table entry
0x23144 0x55320 = Page walk unchanged

= Replace memory accesses with
MMU cache accesses

= Three accesses/walk
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Translation caches

{0b9, 00c, Oae, Ocl, 016}

(L4, L3, L2 indices) POINtEr

(09, 00c, 0a€e) Oxabcde
(09, 006, XxX) Ox23440
(09 XXX XXX Ox55320

= Alternate tag

= Tag by virtual address
fragment

= Smaller
= 27 bits vs. 49 bits
= Skip parts of page walk

Skip to bottom of tree

a8 ¢
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Accesses

“No Cache

Cache tagging comparison

B MMU Cache Accesses
B L2 Accesses
~ DRAM Accesses

Page Table Cache Translation Cache

SPEC CPU2006 Floating Point Suite

a8 -
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Split vs. Unified Caches

= Hash joins
= Reads to many gigabyte table nearly completely random
= Vital to overall DMBS performance [Aliamaki99]
= Simulate with synthetic trace generator

= MMVU cache performance

= 16 gigabyte hash table
= 1L4 entry
= 16 L3 entries
= 8,192 L2 entries
= Low L2 hit rate leads to “level conflict” in unified caches
= Solve by splitting caches or using a smarter replacement scheme
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Split vs. Unified Caches
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Level Conflict in Unified Caches

= LRU replacement

1 - |Important for high-locality
applications
£ 0.75 PP _ _
; = Avoid replacing upper level
% - entries
- = After every L3 access, must
o
© 0.25 be one L2 access
= Each L3 entry pollutes the
0 .
0 2 4 6 8 10 12 14 16 18 20 22 24 cache with at least one

O Unified (LRU) uniqgue L2 entry
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Split vs. Unified Caches

= Split caches

= Split caches have one cache per
level

= Protects entries from upper
levels

= Intel's Paging Structure Cache

AR . .
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Split vs. Unified Caches

= Problem: Size allocation
= Each level large?
= Die area

- Each level small?

= Hurts performance for all
applications

= Unequal distribution?

= Hurts performance for particular
applications
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Variable insertion point LRU replacement

= Modified LRU

- Preserve entries with low reuse
Entry Type for less time

2 = Insert them below the MRU slot
13 - VI-LRU
14 - Novel scheme

[2 = Vary insertion point based on
13 content of cache

= If L3 entries have high reuse,
give L2 entries less time

3\:\ a\:‘\ . .
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Variable insertion point LRU replacement
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Page Table Formats

= In the past, radix table implementations required four
memory references per TLB miss

= Many proposed data structure solutions to replace format
= Reduces memory references/miss
= This situation has changed
= MMU cache is a hardware solution
= Also reduces memory references

= Revisit previous work
- Competing formats are not as attractive now
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Inverted page table

= Inverted (hashed) page table
= Flat table, regardless of key (virtual address) size

= Best case lookup is one

= Average increases as hash collisions occur
- 1.2 accesses / lookup for half full table [Knuth98]

= Radix vs. inverted page table
= IPT poorly exploits spatial locality in processor data cache

= Increases DRAM accesses/walk by 400% for SPEC in
simulation
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Inverted page table
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Inverted page table

= IPT compared to cached radix table
= Number of memory accesses similar (=1.2)

= Number of DRAM accesses increased 4x
= SPARCTSB, Clustered Page Table, etc.
= Similar results

= Caching makes performance proportional to size
- Translations / L2 cache
- Consecutive translations / cache line

= New hardware changes old “truths”
= Replace complex data structures with simple hardware
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Conclusions

= Address translation will continue to be a problem

= Up to 89% performance overhead
= First design space taxonomy and evaluation of MMU caches

= Two-dimension space
- Translation/Page Table Cache

- Split/Unified Cache
= 4.0 > 1.13 L2 accesses/TLB miss for current design
= Existing designs are not ideal
= Tagging
= Translation caches can skip levels, use smaller tags
= Partitioning
= Novel VI-LRU allows partitioning to adapt to workload
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