
The Rebirth of Neural Networks

Olivier Temam
INRIA Saclay

1

I got requests for a recorded version of the keynote. Rather than a recorded version, I thought that a version with some of the key points of each 
slide written down would allow to more quickly browse through my slides. These are not my “slides notes”, more of a summary of what I said, which 
I later wrote down.



Convergence of Trends

2

Neurobiology Applications

Technology

FACET

Neuromorphic

Machine
Learning

Constraints

Innovations

with M. Sebag (CNRS)

Lots of things happening in several domains of science (machine-learning, neurobiology, physics, neuromorphic and our own domain) could make 
neural networks increasingly relevant to our community.



Hype Curve

Technology
trigger

Peak of inflated
expectations

Trough of
disillusionment

Plateau of
productivity

Slope of
enlightment

3

time

level of 
interest

The Gartner hype curve (a similar curve was used during an ISCA keynote at ISCA 2003).



The Hype Curve of Neural Networks

4

time

level of 
interest

Like any new technology, NNs were hyped when first introduced, but their hype curve is atypical, NNs had a long and complicated history (see later 
slides for explanations).



Artificial Neural Networks (ANNs)

Classifier

5

=

output

input

hidden

First, quick recap on ANNs (will talk about biological NNs later on), especially the Multi-Layer Perceptron (MLP).
Main usage: as a classifier (can map n-characteristic input data to p classes, and learn separation between classes).



The Hype Curve of Neural Networks

6

Perceptron
1957

Non-Linear
Separability

1969

Multi-Layer
perceptron

~1979

Single hidden
layer enough

1989

SVM
1998 Today

~2006

Hype curve with dates. Initial perceptron => excitement.  But, with two layers, only linear separability (can only draw lines to separate classes) => 
disappointment.
Multi-Layer Perceptron: non-linear separability => new excitement.
Cybenko’s theorem (MLP can approximate any continuous function with arbitrary accuracy using a single layer) => tricks machine-learning (ML) 
researchers into thinking a single layer enough.
SVM (Support Vector Machine) => classifier with better theoretical properties than ANNs, and outperforms ANN s=> second disillusionment for 
ANNs.
Since 2006: things have changed again.



Deep Networks

7

Standard
ANN

Deep
Network

• ≥5 layers
• 1000s of nodes
• NIPS 2006

H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio, 
"An empirical evaluation of deep architectures on problems 
with many factors of variation,", International Conference on 

Machine Learning, New York, New York, 2007

0 1 2 3 4 5 6 7

Degree correlation (high to none)

C
la

ss
ifi

ca
tio

n 
er

ro
r 

(%
)

0

10

15

20

25

30

35

40
SVM

Deep

Deep Networks (NIPS 2006): ML researchers find that by increasing # and size of layers, certain types of ANNs can outperform SVMs on a broad 
range of tasks.
Experimental evidence provided by Bengio’s group (Hugo Larochelle) and many others since then.
ANNs are now state-of-the-art classifiers again.



Convergence of Trends

8

Neurobiology Applications

Technology

FACET

Neuromorphic

Machine
Learning

Constraints

Innovations

In our own domain:
- recent shift in application focus;
- importance of technology constraints, especially power, increasingly defects. 



Toward Heterogeneous Systems

9

Flexibility

Efficiency

GPU

FPGA

ASIC

CGRA

CPU

ANN

Recent warnings about power (e.g., “Dark Silicon” as coined by ARM). As a result, possible evolution towards heterogeneous systems: program 
decomposed into “sequence of algorithms”, with each algorithm mapped onto one or a few accelerators at any given time: a fraction of transistors 
used at any given time (circumvents “Dark Silicon” issue). But which accelerators ?
All design points valid. ASIC best “power” design point but not flexible. FPGA flexible but significantly less power efficient. Alternative: “multi-
purpose” ASICs which target several generic (possibly fine-grain algorithms). ANN is a candidate multi-purpose ASICs. Naturally, interrogations 
about its application scope.



What ANNs Can Do

10

Classification

Approximation

Clustering

Optimization

The four major types of algorithms which ANNs are good at.



And In PARSEC/RMS ?

11

option pricing
blackscholes bodytrack canneal

chip routing

facesim

dedup
deduplication

fluidanimate freqmine
itemset miner

stream
cluster

image similarity
ferret

swaptions
option pricing

vips x264

Intel attracted attention on RMS (Recognition, Mining, Synthesis) as emerging high-performance applications in 2005. Many of these applications (especially RM) 
rely on statistical and machine-learning algorithms. For quite a few of these algorithms, competitive implementations based on ANNs exist (clearly for 6 out of 12 
PARSEC benchmarks; a bit less clear-cut for dedup and freqmine). However, no compelling reason to use ANNs for implementing most of these tasks.



Defects-Tolerant Accelerators ?

12

NN

• No need to identify/
disable: just learn

• Demise of hardware NNs:

• SVM/algorithmic;

• application scope

• “killer micro”
A more compelling reason: seek defects-tolerant implementations of these tasks. 
Defect tolerance is a strong point of ANNs: no need to identify/disable faulty parts, training algorithm naturally/automatically silences out faulty 
synapses/neurons by decreasing synaptic weights if erratic (uncorrelated) values.
Now, hardware NNs not new, a lot of research end of 1980s, beginning 1990s; died off because (among others): (1) dominance of SVM for a while, 
(2) application scope limited in era of Perfect Club benchmarks, could be changing, (3) killer micro, just like for massively parallel machines: 
software ANNs run on GPP competitive with hardware ANNs after a few generations; no longer true with lack of clock scaling.
Do we just have to reuse past hardware ANNs designs ?



Example: Intel ETANN

13

M
. H

ol
le

r, 
S.

 Ta
m

, H
. C

as
tr

o, 
an

d 
R.

 B
en

so
n, 

"A
n 

el
ec

tr
ic

al
ly 

tr
ai

na
bl

e
ar

tifi
ci

al
 n

eu
ra

l n
et

w
or

k 
(E

TA
N

N
) 

w
ith

 1
02

40
 “

flo
at

in
g 

ga
te

” 
sy

na
ps

es
," 

Ar
tifi

ci
al

 n
eu

ra
l n

et
w

or
ks

, P
isc

at
aw

ay
, N

J, 
U

SA
: I

EE
E 

Pr
es

s, 
19

90

An example design from Intel, this one was analog; both analog and digital designs were proposed at the time.
Fairly typical of what existed at the time: bank of physical neurons, memory bank to store synapses and output of intermediate neurons.



Defects-Tolerant ANNs

14

Spatially folded

MEM

S S S S

S S S

Spatially unfolded
network

Most designs were “spatially folded” (see left) because (1) not many transistors at the time, (2) defects tolerance was not a primary motivation at the time.
But this design is not very defects tolerant: a single defect in the memory decoder could wreck the accelerator; a defect in a neuron would either result in loss of 
significant share of network or significantly degrade performance of network.
Now, more transistors allow to “spatially unfold” designs, closer to conceptual view of ANNs. Multiple benefits: better defects tolerance (amplified by spatial 
distribution of synaptic storage and by degree of expansion), possibility to spatially distribute storage (synapses) close to computations which is key for reducing 
power, combinational execution is possible (no need to pipeline), etc.



Defect Modeling

15

+
+

LUT *

sigmoid(sum(input * weight))

Stuck-At synapse

x

Stuck-At gate input Shorts & Opens

Logic
gate ?

Defects tolerance of ANNs still “conceptual”, what does it exactly mean at the hardware level ?
Need to accurately model defects because values produced by “faulty” neurons or synapses could influence behavior of training algorithm. Defects 
tolerance can be properly assessed, and hardware ANN can be properly designed only if we know “correct” values output by faulty neurons/
synapses (oxymoron). Moreover, in digital implementations, logic operators (add, mult) account for significant share of area. In many papers, even 
recent ones, ANN defect often = stuck-at synapse; not realistic from hardware standpoint. Need to properly emulate behavior of faulty operators. 
Stuck-at gate model OK for test purposes in micro-architectures, but not sufficient for obtaining “correct” values of faulty neurons. 
Inject defects at transistor level and reconstruct corresponding flawed gate.



Hardware ANN Robustness

16

4-bit adder,
20 defects

ANN,
defect 

tolerance 90 inputs,
10 outputs
90% UCI

Illustration of the different behavior of a faulty operator (4-bit adder) if defects injected at gate or transistor level.
Method used to inject defects in hardware ANN (Verilog implementation). Small digital ANN but can already tackle about 90% tasks of UC Irvine 
Machine-Learning Repository based on # attributes/classes. Defects tolerance of hardware ANN observed on a sample of 10 UCI cases.



Neurobiology Applications

Technology

FACET

Neuromorphic

Machine
Learning

Constraints

Innovations

Convergence of Trends

with A. Hashmi, A. Nere, M. Lipasti (Univ. Wisconsin)
H. Berry (INRIA) 

Both application scope and defects tolerance capabilities of ARTIFICIAL Neural Networks already significant. But how can they be further 
expanded ?
Biological neural networks suggest both capabilities (application scope and defects tolerance) can be significantly expanded.



	
 Aoccdrnig to a rscheearch at 
Cmabrigde Uinervtisy, it deosn’t 
mttaer in waht oredr the ltteers in 
a wrod are, the olny iprmoatnt 
tihng is taht the frist and lsat 
ltteer be at the rghit pclae. And 
we spnet hlaf our lfie larennig how 
to splel wrods.  Amzanig huh?

Beyond ANNs: Biological NNs

18 learning
Illustrating the defects tolerance (even to noisy input) and application capabilities of biological neural networks.
Intuitively, principle is to map “features” (e.g., presence of letters, at certain positions) to high-level concepts, such as words.



How Can Computers Do the Same ?

19

FACETS

FET

Integrate & Fire
250,000 neurons

wafer
~ 104 acceleration

Integrate & Fire (?)
108 neurons

new silicon devices

Molecular level
10,000s neurons

1000s cores
~ real-timeIBM/EPFL

Integrate & Fire
109 neurons
65,000 chips
~ real-time

1011 neurons
1015 synapses

30-400Hz

• Faithfully emulate neurons/synapses
• Right abstraction level ?
• Achieve critical mass
• Find “algorithm”

Lots of researchers hard at work trying to understand how biological neural networks work.
Four example projects (2 in US, 2 in Europe), roughly same approach:
- Emulate elementary components; disagreement on appropriate “abstraction level” (e.g., molecular vs. integrate and fire neuron model);
- Implement a large quantity of neurons with the expectation that bio-like behavior will start to emerge; hardware used varies a lot;
- Accept that assembling a large number of neurons is not sufficient and understand what, in structure of networks and connectivity (among 
others), yields bio-like behavior.



“Algorithm” ?

20

• Likely existence of “generic 
algorithm”

• Neuroscientists starting to 
reverse-engineer

• Algorithm:  automatic 
abstraction of data

25000 genes

1011 neurons

Plasticity

M
. S

ur
 a

nd
 C

.A
. L

ea
m

ey
, "

D
ev

el
op

m
en

t a
nd

 p
la

sti
ci

ty
 

of
 c

or
tic

al
 a

re
as

 a
nd

 n
et

wo
rk

s,"
 N

at
ur

e 
Re

vi
ew

s 
Ne

ur
os

ci
en

ce
, v

ol
. 2

, 2
00

1,
 p

p.
 2

51
-6

2.

Probable existence of a “generic” algorithm born out of the network structure. Some biological evidences of the existence of that algorithm, as 
mentioned by biologists:
- # genes vs. # neurons;
- physiological inspection confirms cortical columns identical almost everywhere in cortex, including within “specialized” areas;
- plasticity, demonstrated by multiple experiments; here one case of “rewiring” the auditory/visual cortex of ferrets leads to auditory cortex 
performing visual-like processing, i.e., plasticity even in “specialized” areas;
Neuroscientists starting to reverse engineer “algorithm”. In a nutshell, it consists in automatically abstracting raw data into increasingly complex 
notions.



Example with Visual Cortex

21

Acquisition Preprocessing Edge detection

Feature extraction

Complex object 
recognition

Invariance
(scale, rotation,...)

Example with the visual cortex. Typical phases of the visual cortex. Biological implementation ?



Neuron-Level Model

22

LGN cells

weak

strong

strong weak

Gabor
filter

• Neurons sampling LGNs

Neuron
=

strong

weak

Each level has a “semantic”. LGN (visual sensory) cells: detect an illuminated pixel surrounded by darkness (on-off LGN).
A higher-level neuron sampling LGNs can, for instance, have the semantic of an illuminated diagonal segment surrounded by darkness.



.

..

Neuron-Level Model (contd)

23

=

=
.
.

=

.

..

=

Feature extraction

Object recognition

More neurons 
= 

more accuracy
=

Rotation-invariant
feature

+ MAX

Same principles when moving up the hierarchy: at next level, neurons sampling “segment-level” neurons have semantic of tiny shapes which are 
combinations of segments (see red shapes at 2nd-level, left of segment-level neurons). At next level, more complex shapes start to emerge, e.g., 
“Y”-shape evoking elementary tree shape.
Structure is more complex than just “additions”: each neuron can poll down 20 or more neurons, so “blob”-like shapes with no clear semantic can 
easily emerge if all neurons, including weak ones, are left to contribute (consider adding all three 2nd-level shapes, see above “Y”, in 3rd level). At 
every level: competition among neurons (lateral inhibitory connections), strong neurons silence weak ones ~ MAX operation. Results in shapes with 
crisp semantic.



Full Image Recognition, Only Neurons

24

Using Poggio’s 
HMAX model

~ ranked 7/10

Neurobiology (realism)         Architecture (robustness)

Example: Poggio’s HMAX model; such a bio-inspired approach can compare to state-of-the-art image recognition algorithms (tested in PASCAL 
challenge).
Poggio’s model assumes very “regular” neurons organization and wiring: not “biologically realistic” enough, and does not fit hardware purposes 
(algorithm breaks if neuron/synapse breaks, which defeats hardware defects-tolerance purposes): achieve model capability using statistical 
connections ? Needs of neurobiology meet needs of architecture.
Back to hardware: now possible to implement FULL image recognition application using ONLY neurons. Therefore, power benefits and defects 
tolerance not only apply to “core algorithm” (mapped to hardware NN, rest of application on traditional core), but extend to full image application 
entirely mapped on hardware NN accelerator, provided hardware NN can accommodate large enough network.



Neurobiology Applications

Technology

FACET

Neuromorphic

Machine
Learning

Constraints

Innovations

Convergence of Trends

with R. Heliot, A. Joubert (CEA)
S. Saïghi, J. Tomas (IMS), J. Grollier (CNRS/Thales)

Large networks are thus needed. How can we implement them ?



Size

26

90

10

10

10mm

10m
m

90nm

• 90 inputs, 10 hidden, 10 outputs

Digital CMOS has assets (same technology as current processors, readily compatible), allows implementation of useful hardware ANNs accelerators, 
but not dense enough for the largest Deep Networks or bio-inspired networks.
 



Analog Spiking Neuron

• Dense analog 
implementation

• Spikes more resilient to 
noise

27

~ 14 transistors

∫
Spike

VREF

input

neuron+-

00
1 3 2 0 1

1
2
3
4

0

i

time

1
2
3
4

0

Noise

Synapse Neuron

Analog neurons: much denser implementations of operators (add, mult, activation function). Simple grid-like design possible (triangles are 
neurons, lower-layer bottom, upper-layer right; white squares are synapses). Most area now used by synapses (storage and multiplication).
Analog spiking neuron: may be more resilient to noise (e.g., thermal noise) than current-coding implementations.



Synapses ? Memristors

28

Memristor

3nm x 3nm, 1ns

J. 
J. Y

an
g/

H
P 

La
bs

V = MxI, M = dΦ/dq
M: memristance

v

i0

1

analog

conducting

insulating

+
+

+
+

+
+V

Synapse implementation can be made much more dense using memristors; recent device implementation by HP Labs (2008). Component almost 
ideally suited to hardware implementation of synapses (can be used as a switch, but also as analog storage; memristance is used to code synaptic 
weight).
Recent Ferroelectric Tunnel Junctions (2009) can allow to implement memristors with high endurance and low write power.
Analog neurons + memristors = very dense implementations of neural networks, opening up hardware NNs with broad application scope (see 
previous slides).



Beyond Silicon

29

Infineon NeuroChip

Individual transistor-neuron links
P. 

Fr
om

he
rz

And if not enough: why not directly use biological neural networks ? Not only allows large networks, but pretty cheap to implement too.
May not be so preposterous: Fromherz successfully created information loop between individual biological neurons (connected through biological 
synapses) and silicon transistor/stimulator pairs. Other groups have since then achieved similar capabilities. Infineon teamed with Fromherz to 
implement prototype NeuroChip for connecting whole layer of biological neurons with transistors.



Thank You

Pradeep Dubey, "Recognition, Mining and Synthesis moves computers to the era of 
tera," Technology@Intel Magazine, vol. 9, 2005, pp. 1-10.

To advance what we do with computers [...] we 
need computers that can model events, objects 
and concepts based on what we show the 
computers and the data accessible to them.

Quote from Pradeep Dubey, author of RMS article. Disclaimer: I am not suggesting Pradeep mentioned neural networks in his article, he did not.
Nonetheless, the quote refers to something pretty much in the spirit of “automatic abstraction of raw data into complex notions”...


