

ISCA 2010

The Virtual Write Queue: Coordinating DRAM and Last-Level Cache Policies

Jeffrey Stuecheli^{1,2}, Dimitris Kaseridis¹, David Daly³, Hillery C. Hunter³ & Lizy K. John¹

¹ECE Department, The University of Texas at Austin

²IBM Corp., Austin

³IBM Thomas J. Watson Research Center

Laboratory for Computer Architecture

6/21/2010

Memory terminology

- Target System: Multi-Core CMP
 - 8-16 cores (and up)
 - Shared cache and memory subsystem
- Terminology:
 - Channel/Rank/Chip/Bank
- Area of focus: Improving scheduling of memory interface in light of many cores combined with DRAM technology challenges

Memory Wall (Labyrinth)

- Traditional concern is read latency
 - Fixed at ~26 ns
- Beyond latency, many parameters are limiters to efficient utilization
- Data bus frequency $\rightarrow 2x$ each DDRx generation
 - DDR 200-400, DDR2 400-1066, DDR3 800-1600
 - But, internal latency is ~constant
- Fixed latency

- Bank Precharge (50ns, ~7 operations@1066Mhz)
- Write→Read (7.5ns, ~2 operations@1066MHz)

Implications

Scheduling efficiency

- Reads \rightarrow Critical path to execution
- Writes \rightarrow Decoupled

Queuing

- We need more write buffering (make the most of each opportunity to execute writes)
- Not Read buffering due to latency criticality of loads

The Virtual Write Queue

- Grow effective write reordering by an order of magnitude through a twolevel structure
 - Writes can only *execute* out of physical write queue
 - Keep physical queue full with a *good* mix of operations
 - Physical write queue becomes staging ground, covers latency to pull data from the LLC.

VWQ Details

Cache→Memory Writeback Evolution

- Forced Writeback: Traditional approach to writeback.
- Eager Writeback: Decouple cache fill from writeback with early "eager" writeback of dirty data (Lee, MICRO 2000).
- Scheduled Writeback: Our proposal. Place writeback under the control of the memory scheduler.

Filling the Physical Write Queue

Key concept:

- Relatively few classes of writes:
 - Rank Classification: Which Rank?
 - Page Mode: Quality level
 - Bank conflicts: Avoid writes to same bank, different page
- Physical Write Queue Content:
 - Maintain high quality writes in structure
 - Keep Writes to each Rank

Address Mapping

Set address of cache contains

- All Rank selection bits
- All Bank selection bits
- Some number of Column bits (address within a DRAM page)

Cache Mapping	Cache Tag		Cache Set			Block Offset
DRAM Mapping	DRAM Row	DRAM Column		Bank	Rank	Block Offset
	msb					lsb

The Cache Cleaner

- Goal: fast/efficient search of large LLC directory
- Based around Set State Vector (SSV)
- SSV enables
 - Efficient communication of dirty lines to be cleaned
- Cleaner will select line based on current physical write Q contents
 - Keep full with uniform mix of operations to each DRAM resource

Set State Vector

Read/Write Priority in scheduler

Goal: Defer write operations as long as possible

- Forced Writeback: Queuing depth is quite limited.
- Eager Writeback: Write queue is always full; how do we know when we must execute writes?
- Virtual Write Queue: Monitor overall fullness on a per Rank basis. Much larger effective buffering capability.

Evaluation/Results

Bandwidth Improvement Example

From SPEC mcf workload

Evaluation/Results

Virtual Write Queue IPC Gains

- Each experiment consists of 8 copies of the same benchmark
 - IPC was observed to be uniform across cores (symmetrical system was fair)
- Improvements in 1,2, and 4 rank systems
 - Largest improvement with 1 rank due to exposed "Write to Read Same Rank" penalty

Power Reduction Due to Increased Write Page Mode Access

Overall DRAM power reduction is shown

Conclusion

- Memory scheduling is critical to CMP design
- We must leverage all state in the SOC/CMP

Thank You, Questions?

Laboratory for Computer Architecture University of Texas Austin & IBM Austin & IBM T. J. Watson Lab