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GP Processors Are Inefficient

Processors work well for a broad range of applications
• Have well amortized NRE
• For a specific performance target, energy and area efficiency is low

Processors are power limited
• Hard to meet performance and energy of emerging applications

• Enhancement of low-quality video, analysis and capture motion in 3D, etc
• At fixed power, more ops/sec requires lower energy/op

Emerging
Applicationsvs.

Nehalem
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More Efficient Computing Is Possible

Embedded media devices perform GOP/s
• Cell phones, video cameras, etc

Efficiency of processors inadequate for these apps
• ASICs needed to meet stringent efficiency requirements

ASICs are difficult to design and inflexible

Emerging
Applications

ASIC
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An Example

High definition video encoding is ubiquitous
• Cell phones, camcorders, point and shoot cameras, etc.

A small ASIC does it
• Can easily satisfy performance and efficiency requirements

Very challenging for processors
• What makes the processors inefficient compared to ASICs?
• What does it to take to make a processor as efficient as an ASIC?
• How much programmability do you lose?
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CMP Energy Breakdown

Assume everything but functional unit is overhead
• Only 20x improvement in efficiency
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For HD H.264 encoder
• 2.8GHz Pentium 4 is 500x worse in energy*
• Four processor Tensilica based CMP is also 500x worse in energy*

* Chen, T.-C., et al., "Analysis and architecture design of an HDTV720p 30 frames/s H.264/AVC encoder," Circuits and 
Systems for Video Technology, IEEE Transactions on, vol.16, no.6, pp. 673-688, June 2006. 



Achieving ASIC Efficiencies: Getting to 500x

Need basic ops that are extremely low-energy
• Function units have overheads over raw operations
• 8-16 bit operations have energy of sub pJ

• Function unit energy for RISC was around 5pJ

And then don’t mess it up
• “No” communication energy / op

• This includes register and memory fetch
• Merging of many simple operations into mega ops

• Eliminate the need to store / communicate intermediate results
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How Much Specialization Is Needed?

How far will general purpose optimizations go?
• Can we stay clear of application specific optimizations?
• How close to ASIC efficiencies will this achieve?

Better understand nature of various overheads
• What are the “long poles” that need to be removed

Is there an incremental path from GP to ASIC
• Is it possible to create an intermediate solution?

7



Case Study

Use Tensilica to create optimized processors

Transform CMP into an efficient HD H.264 encoder
• To better understand the sources of overhead in processor

Why H.264 Encoder?
• It’s everywhere
• Variety of computation motifs – data parallel to control intensive
• Good software and hardware implementations exist

• ASIC H.264 solutions demonstrate a large energy advantage
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Optimization Strategy For Case Study

Two optimization stages
• General purpose, data parallel optimizations

• SIMD, VLIW, reduced register and data path widths
• Operation fusion – limited to two inputs and one output

• Similar to Intel’s SSE instructions

• Application specific optimizations
• Arbitrary new compute operations
• Closely couple data storage and data-path structures
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Industry standard for video compression
• Digital television, DVD-video, mobile TV, internet video, etc. 

What Is H.264?

Prediction Transform/
Quantize

Entropy
Encode

Inter 
prediction

Intra 
prediction 

(IP)
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Integer and Fractional Motion 
Estimation (IME, FME)

CABAC



Data Parallel

Computational Motifs Mapping

Prediction Transform/
Quantize

Entropy
Encode

Inter 
prediction

Intra 
prediction
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Sequential



H.264 Encoder - Uni-processor Performance
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IME and FME dominate total execution time

CABAC is small but dictates final gain



H.264 – Macroblock Pipeline
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Base CMP vs. ASIC

Huge efficiency gap
• 4-proc CMP 250x slower 
• 500x extra energy

Manycore doesn’t help
• Energy/frame remains same
• Performance improves

14



General Purpose Extensions: SIMD & ILP

SIMD
• Up to 18-way SIMD in reduced precision

VLIW
• Up to 3-slot VLIW

Load

Add

Load
Add

Load
Add

12 bit

16x8 bit

16x12 bit
accumulator
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SIMD and ILP - Results

Order of magnitude improvement in performance, energy
• For data parallel algorithms
• But ASIC still better by roughly 2 orders of magnitude
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SIMD and ILP – Results

Most of energy dissipation is still an overhead
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Good news: we made the FU more efficient
• Reduced the power of the op by 4x

• By bit width / simplification

Bad news: overhead decreased by only 2x



Operation Fusion

Compiler can find interesting instructions to merge
• Tensilica’s Xpres

We did this manually
• Tried to create instructions that might be possible

Might be free in future machines
• Common instruction might be present in GP
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Operation Fusion – Not A Big Gain

50x less energy efficient and 25x slower ASIC

Helps a little, so it is good if free …
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Data Parallel Optimization Summary

Great for data parallel applications
• Improve energy efficiency by 10x over CPU
• But CABAC largely remains unaffected

Overheads still dominate
• Basic operations are very low-energy
• Even with 15-20 operations per instruction, get 90% overhead
• Data movement dominates computation

To get ASIC efficiency need more compute/overhead
• Find functions with large compute/low communication
• Aggregate work in large chunks to create highly optimized FUs
• Merge data-storage and data-path structures
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“Magic” Instructions

Fuse computational unit to storage

Create specialized data storage structures
• Require modest memory bandwidth to keep full
• Internal data motion is hard wired
• Use all the local data for computation

Arbitrary new low-power compute operations

Large effect on energy efficiency and performance

Merged 
Register / Hardware

Block
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Magic Instructions – SAD

sum = sum + abs(xref – xcur)

Looking for the difference between two images 
• Hundreds of SAD calculations to get one image difference

• Need to test many different position to find the best
• Data for each calculation is nearly the same
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Magic Instructions - SAD

SIMD implementation
• Limited to 16 operations per cycle
• Horizontal data-reuse requires many shift operations
• No vertical data reuse means wasted cache energy
• Significant register file access energy
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Search 
Center

Magic – Serial in, parallel out structure
• Enables 256 SADs/cycle which reduces fetch energy
• Vertical data-reuse results in reduced DCache energy
• Dedicated paths to compute reduce register access energy



Custom SAD instruction Hardware

Reference Pixel Registers:
Horizontal and vertical shift with 

parallel access to all rows
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Fractional Motion Estimation

Take the output from the integer motion estimation
• Run again against base image shifted by ¼  of a pixel
• Need to do this in X and Y
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Generating the Shifted Images:
Pixel Upsampling

xn = x-2 – 5x-1 + 20x0 + 20x1 – 5x2 + x3

FIR filter requiring one new pixel per computation
• Regular register files require 5 transfers per op
• Wasted energy in instruction fetch and register file

Augment register files with a custom shift register
• Parallel access of entries to create custom FIR arithmetic unit
• Result dissipates 1/30th of energy of traditional approach
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Custom FME

Custom upsampling datapath
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Custom FME

Custom upsampling datapath
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Custom FME

Custom upsampling datapath
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List Of Other Magic Instructions

Hadamard/DCT
• Matrix transpose unit
• Operation fusion with no limitation on number of operands

Intra Prediction
• Customized interconnections for different prediction modes

CABAC
• FIFO structures in binarization module
• Fundamentally different computation fused with no restrictions
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Not many were needed



Magic Instructions - Energy

Efficiency orders of magnitude better than GP

Within 3X of ASIC energy efficiency
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Magic instructions - Results

Over 35% energy now in ALU
• Overheads are well-amortized – up to 256 ops / instruction
• More data re-use within the data-path

Most of the code involves magic instructions
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Magic Instructions Summary

Optimization strategy similar across all algorithms
• Closely couple data storage and data path structures
• Maximize data reuse inside the datapath

Commonly used hardware structures and techniques
• Shift registers with parallel access to internal values
• Direct computation of the desired output

• Eliminate the generation (and storage) of intermediate results

Hundreds of extremely low-power ops per instruction

Works well for both data parallel and sequential algorithms
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Conclusion

Many operations are very simple and low energy
• They SIMD/Vector parallelize well, but overheads still dominate
• To get ASIC efficiencies, need 100s ops/instruction

• Specialized hardware/memory

Building ASIC hardware in a processor worked well
• Easier than building an ASIC, since it was incremental
• Start with strong software development environment

• Add and debug only the hardware you need

Efficient hardware requires customization
• We should make doing chip customization feasible
• And that means we should design chip generators and not chips
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Thank you!
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GP Processor vs. ASIC

ASICs typically much more efficient than processors
• Orders of magnitude gap in performance and energy

If processors are energy limited
• They will need to use ASIC “tricks”
• We need to figure out the sources of processor inefficiency

vs.
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CMP Energy breakdown

Assume everything but functional unit is overhead
• Only 20x improvement in efficiency
• In fact IF elimination only increases efficiency by 2x
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For HD H.264 encoder
• 2.8GHz Pentium 4 is 500x worse in energy
• Four processor Tensilica based CMP is also 500x worse in energy



Operation Fusion - Results

Overhead to compute ratio does not really change
• Fusion enables optimization of compute operations
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Magic instructions – Results

Again most of energy is in ALU
• Map complex control flow to combinational logic
• Beyond simple parallelism
• Major code re-write
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H.264 CMP mapping

Map 4-stage macroblock pipeline to 4-proc CMP
• Minimize dependencies and simplify data transfers

Processors operate in a data flow manner
• Data comes from the main memory or previous pipe stage

Simple In-order RISC cores with L1 caches
• 16k D-Cache, 16K I-Cache
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Fuse frequently occurring complex sub-graphs
• RISC requires five 32-bit add/sub and four mults

After fusion we have:

xn = x-2 – 5x-1 + 20x0 + 20x1 – 5x2 + x3

acc = 0;
acc = AddShft(acc, x0, x1, 20); 
acc = AddShft(acc, x-1, x2, -5);  
acc = AddShft(acc, x-2, x3, 1); 

xn = Sat(acc);

Operation Fusion
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SAD Reduction Instruction Hardware

• Calculate SAD sums for various block sizes
• 4x4, 8x4, 4x8, 8x8,….16x16
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