
Understanding Sources of Inefficiency in
General-Purpose Chips

Rehan Hameed
Wajahat Qadeer

Megan Wachs
Omid Azizi

Alex Solomatnikov
Benjamin Lee

Stephen Richardson
Christos Kozyrakis

Mark Horowitz

GP Processors Are Inefficient

Processors work well for a broad range of applications
• Have well amortized NRE
• For a specific performance target, energy and area efficiency is low

Processors are power limited
• Hard to meet performance and energy of emerging applications

• Enhancement of low-quality video, analysis and capture motion in 3D, etc
• At fixed power, more ops/sec requires lower energy/op

Emerging
Applicationsvs.

Nehalem

2

More Efficient Computing Is Possible

Embedded media devices perform GOP/s
• Cell phones, video cameras, etc

Efficiency of processors inadequate for these apps
• ASICs needed to meet stringent efficiency requirements

ASICs are difficult to design and inflexible

Emerging
Applications

ASIC

3

An Example

High definition video encoding is ubiquitous
• Cell phones, camcorders, point and shoot cameras, etc.

A small ASIC does it
• Can easily satisfy performance and efficiency requirements

Very challenging for processors
• What makes the processors inefficient compared to ASICs?
• What does it to take to make a processor as efficient as an ASIC?
• How much programmability do you lose?

4

CMP Energy Breakdown

Assume everything but functional unit is overhead
• Only 20x improvement in efficiency

5

For HD H.264 encoder
• 2.8GHz Pentium 4 is 500x worse in energy*
• Four processor Tensilica based CMP is also 500x worse in energy*

* Chen, T.-C., et al., "Analysis and architecture design of an HDTV720p 30 frames/s H.264/AVC encoder," Circuits and
Systems for Video Technology, IEEE Transactions on, vol.16, no.6, pp. 673-688, June 2006.

Achieving ASIC Efficiencies: Getting to 500x

Need basic ops that are extremely low-energy
• Function units have overheads over raw operations
• 8-16 bit operations have energy of sub pJ

• Function unit energy for RISC was around 5pJ

And then don’t mess it up
• “No” communication energy / op

• This includes register and memory fetch
• Merging of many simple operations into mega ops

• Eliminate the need to store / communicate intermediate results

6

How Much Specialization Is Needed?

How far will general purpose optimizations go?
• Can we stay clear of application specific optimizations?
• How close to ASIC efficiencies will this achieve?

Better understand nature of various overheads
• What are the “long poles” that need to be removed

Is there an incremental path from GP to ASIC
• Is it possible to create an intermediate solution?

7

Case Study

Use Tensilica to create optimized processors

Transform CMP into an efficient HD H.264 encoder
• To better understand the sources of overhead in processor

Why H.264 Encoder?
• It’s everywhere
• Variety of computation motifs – data parallel to control intensive
• Good software and hardware implementations exist

• ASIC H.264 solutions demonstrate a large energy advantage

8

Optimization Strategy For Case Study

Two optimization stages
• General purpose, data parallel optimizations

• SIMD, VLIW, reduced register and data path widths
• Operation fusion – limited to two inputs and one output

• Similar to Intel’s SSE instructions

• Application specific optimizations
• Arbitrary new compute operations
• Closely couple data storage and data-path structures

9

Industry standard for video compression
• Digital television, DVD-video, mobile TV, internet video, etc.

What Is H.264?

Prediction Transform/
Quantize

Entropy
Encode

Inter
prediction

Intra
prediction

(IP)

10

Integer and Fractional Motion
Estimation (IME, FME)

CABAC

Data Parallel

Computational Motifs Mapping

Prediction Transform/
Quantize

Entropy
Encode

Inter
prediction

Intra
prediction

11

Sequential

H.264 Encoder - Uni-processor Performance

12

IME and FME dominate total execution time

CABAC is small but dictates final gain

H.264 – Macroblock Pipeline

13

Base CMP vs. ASIC

Huge efficiency gap
• 4-proc CMP 250x slower
• 500x extra energy

Manycore doesn’t help
• Energy/frame remains same
• Performance improves

14

General Purpose Extensions: SIMD & ILP

SIMD
• Up to 18-way SIMD in reduced precision

VLIW
• Up to 3-slot VLIW

Load

Add

Load
Add

Load
Add

12 bit

16x8 bit

16x12 bit
accumulator

15

SIMD and ILP - Results

Order of magnitude improvement in performance, energy
• For data parallel algorithms
• But ASIC still better by roughly 2 orders of magnitude

16

SIMD and ILP – Results

Most of energy dissipation is still an overhead
17

Good news: we made the FU more efficient
• Reduced the power of the op by 4x

• By bit width / simplification

Bad news: overhead decreased by only 2x

Operation Fusion

Compiler can find interesting instructions to merge
• Tensilica’s Xpres

We did this manually
• Tried to create instructions that might be possible

Might be free in future machines
• Common instruction might be present in GP

18

Operation Fusion – Not A Big Gain

50x less energy efficient and 25x slower ASIC

Helps a little, so it is good if free …

19

Data Parallel Optimization Summary

Great for data parallel applications
• Improve energy efficiency by 10x over CPU
• But CABAC largely remains unaffected

Overheads still dominate
• Basic operations are very low-energy
• Even with 15-20 operations per instruction, get 90% overhead
• Data movement dominates computation

To get ASIC efficiency need more compute/overhead
• Find functions with large compute/low communication
• Aggregate work in large chunks to create highly optimized FUs
• Merge data-storage and data-path structures

20

21

“Magic” Instructions

Fuse computational unit to storage

Create specialized data storage structures
• Require modest memory bandwidth to keep full
• Internal data motion is hard wired
• Use all the local data for computation

Arbitrary new low-power compute operations

Large effect on energy efficiency and performance

Merged
Register / Hardware

Block

22

Magic Instructions – SAD

sum = sum + abs(xref – xcur)

Looking for the difference between two images
• Hundreds of SAD calculations to get one image difference

• Need to test many different position to find the best
• Data for each calculation is nearly the same

23

Search
Center

Candidate
Block

Candidate
Motion
Vector

Magic Instructions - SAD

SIMD implementation
• Limited to 16 operations per cycle
• Horizontal data-reuse requires many shift operations
• No vertical data reuse means wasted cache energy
• Significant register file access energy

24

Search
Center

Magic – Serial in, parallel out structure
• Enables 256 SADs/cycle which reduces fetch energy
• Vertical data-reuse results in reduced DCache energy
• Dedicated paths to compute reduce register access energy

Custom SAD instruction Hardware

Reference Pixel Registers:
Horizontal and vertical shift with

parallel access to all rows

25

16 Pixels 16 Pixels

16 Pixels 16 Pixels

16 Pixels 16 Pixels

16 Pixels 16 Pixels

128-Bit Load 128-Bit Load

16 Pixels

16 Pixels

16 Pixels

16 Pixels

Four 4x1 SAD Units

12
8

B
it

W
rit

e
Po

rtFour 4x1 SAD Units

Four 4x1 SAD Units

Four 4x1 SAD Units

256 SAD Units Current Pixel Registers

Fractional Motion Estimation

Take the output from the integer motion estimation
• Run again against base image shifted by ¼ of a pixel
• Need to do this in X and Y

26

Search
Center

Candidate
Block

Candidate
Motion
Vector

Generating the Shifted Images:
Pixel Upsampling

xn = x-2 – 5x-1 + 20x0 + 20x1 – 5x2 + x3

FIR filter requiring one new pixel per computation
• Regular register files require 5 transfers per op
• Wasted energy in instruction fetch and register file

Augment register files with a custom shift register
• Parallel access of entries to create custom FIR arithmetic unit
• Result dissipates 1/30th of energy of traditional approach

27

Custom FME

Custom upsampling datapath

28

Custom FME

Custom upsampling datapath

29

Custom FME

Custom upsampling datapath

30

List Of Other Magic Instructions

Hadamard/DCT
• Matrix transpose unit
• Operation fusion with no limitation on number of operands

Intra Prediction
• Customized interconnections for different prediction modes

CABAC
• FIFO structures in binarization module
• Fundamentally different computation fused with no restrictions

31

Not many were needed

Magic Instructions - Energy

Efficiency orders of magnitude better than GP

Within 3X of ASIC energy efficiency

32

Magic instructions - Results

Over 35% energy now in ALU
• Overheads are well-amortized – up to 256 ops / instruction
• More data re-use within the data-path

Most of the code involves magic instructions
33

Magic Instructions Summary

Optimization strategy similar across all algorithms
• Closely couple data storage and data path structures
• Maximize data reuse inside the datapath

Commonly used hardware structures and techniques
• Shift registers with parallel access to internal values
• Direct computation of the desired output

• Eliminate the generation (and storage) of intermediate results

Hundreds of extremely low-power ops per instruction

Works well for both data parallel and sequential algorithms

34

Conclusion

Many operations are very simple and low energy
• They SIMD/Vector parallelize well, but overheads still dominate
• To get ASIC efficiencies, need 100s ops/instruction

• Specialized hardware/memory

Building ASIC hardware in a processor worked well
• Easier than building an ASIC, since it was incremental
• Start with strong software development environment

• Add and debug only the hardware you need

Efficient hardware requires customization
• We should make doing chip customization feasible
• And that means we should design chip generators and not chips

35

Thank you!

36

GP Processor vs. ASIC

ASICs typically much more efficient than processors
• Orders of magnitude gap in performance and energy

If processors are energy limited
• They will need to use ASIC “tricks”
• We need to figure out the sources of processor inefficiency

vs.

37

CMP Energy breakdown

Assume everything but functional unit is overhead
• Only 20x improvement in efficiency
• In fact IF elimination only increases efficiency by 2x

38

For HD H.264 encoder
• 2.8GHz Pentium 4 is 500x worse in energy
• Four processor Tensilica based CMP is also 500x worse in energy

Operation Fusion - Results

Overhead to compute ratio does not really change
• Fusion enables optimization of compute operations

39

Magic instructions – Results

Again most of energy is in ALU
• Map complex control flow to combinational logic
• Beyond simple parallelism
• Major code re-write

40

H.264 CMP mapping

Map 4-stage macroblock pipeline to 4-proc CMP
• Minimize dependencies and simplify data transfers

Processors operate in a data flow manner
• Data comes from the main memory or previous pipe stage

Simple In-order RISC cores with L1 caches
• 16k D-Cache, 16K I-Cache

41

Fuse frequently occurring complex sub-graphs
• RISC requires five 32-bit add/sub and four mults

After fusion we have:

xn = x-2 – 5x-1 + 20x0 + 20x1 – 5x2 + x3

acc = 0;
acc = AddShft(acc, x0, x1, 20);
acc = AddShft(acc, x-1, x2, -5);
acc = AddShft(acc, x-2, x3, 1);

xn = Sat(acc);

Operation Fusion

42

SAD Reduction Instruction Hardware

• Calculate SAD sums for various block sizes
• 4x4, 8x4, 4x8, 8x8,….16x16

43

SAD0-3 SAD4-7 SAD8-11 SAD12-15

SAD0-3 SAD4-7 SAD8-11 SAD12-15

SAD0-3 SAD4-7 SAD8-11 SAD12-15

R0

R1

R15

R
ed

uc
tio

n

S0 S1 S2 S3
SAD0-3 SAD4-7 SAD8-11 SAD12-15

SAD0-3 SAD4-7 SAD8-11 SAD12-15

R2

R3 S4 S5 S6 S7

S8 S9 S10 S11

S12 S13 S14 S15

R
ed

uc
tio

n

Partial SAD Sums for
16 macro-block rows

4x4 SAD
Sums

S0 S1 S2 S3

S4 S5 S6 S7

S0 S1 S2 S3

S4 S5 S6 S7

8x4 SAD
Sums

4x8 SAD
Sums

	Understanding Sources of Inefficiency in General-Purpose Chips
	GP Processors Are Inefficient
	More Efficient Computing Is Possible
	An Example
	CMP Energy Breakdown
	Achieving ASIC Efficiencies: Getting to 500x
	How Much Specialization Is Needed?
	Case Study
	Optimization Strategy For Case Study
	What Is H.264?
	Computational Motifs Mapping
	H.264 Encoder - Uni-processor Performance
	H.264 – Macroblock Pipeline
	Base CMP vs. ASIC
	General Purpose Extensions: SIMD & ILP
	SIMD and ILP - Results
	SIMD and ILP – Results
	Operation Fusion
	Operation Fusion – Not A Big Gain
	Data Parallel Optimization Summary
	Slide Number 21
	“Magic” Instructions
	Magic Instructions – SAD
	Magic Instructions - SAD
	Custom SAD instruction Hardware
	Fractional Motion Estimation
	Generating the Shifted Images:� Pixel Upsampling
	Custom FME
	Custom FME
	Custom FME
	List Of Other Magic Instructions
	Magic Instructions - Energy
	Magic instructions - Results
	Magic Instructions Summary
	Conclusion
	Slide Number 36
	GP Processor vs. ASIC
	CMP Energy breakdown
	Operation Fusion - Results
	Magic instructions – Results
	H.264 CMP mapping
	Operation Fusion
	SAD Reduction Instruction Hardware

