COHESION: A Hybrid Memory
Model for Accelerators

John H. Kelm, Daniel R. Johnson, William Tuohy,
Steven S. Lumetta and Sanjay J. Patel

University of lllinois at Urbana-Champaign

#gel @LLLINO IS




Chip Multiprocessors Today

* General-purpose + accelerators (e.g., GPUs)

e General-purpose CMP Challenges:

1. Programmability
2. Power/perf density of ILP-centric cores

3. Scalability of HW coherence, strict memory models

e Accelerator Challenges:
1. Inflexible programming/execution models
2. Hard to scale irregular parallel apps
3. Lack of conventional memory model

Qigel ][ ILLINOLS John H. Kelm

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN




e Industry Trend: Integration over time
e Hybrids: Accelerators + CPUs together on die
e More core/compute heterogeneity but...

...more homogeneity in memory model

Past... ...Present... ...Future.

Our Proposal:
Hybrid Memory Model

Qigel ][ ILLINOLS John H. Kelm 3

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN




CMP Memory Model Choices

Conventional Multicore CPU

e Ex:Inteli7, Sun Niagara
e Optimized for:

Ex: NVIDIA GPU, IBM Cell
Optimized for:

— Minimal latency — Maximum throughput

— Tightly coupled sharing — Loosely coupled sharing

— Fine-grained synchronization — Coarse-grained synchronization

— Minimal programmer effort — Short silicon design cycle
 Provides: * Provides:

— Single address space — Multiple address spaces

— Hardware caching — Scratchpad memories

— Strong ordering — Relaxed ordering

[— HW-managed coherence — SW-managed coherence ]

Rigel MLLLINOLS i e :



Roadmap

* Problem statement
* COHESION design
e Use cases and programming examples

Addressed in this talk:

1. Opportunity: Is combining protocols worthwhile?
2. Feasibility: How does one implement hybrid memory models?

3. Tradeoffs: What are the tradeoffs in HW . V. SW .
. Benefit: What does hybrid coherence get you?

fff"'?l el lLLLINOLS




Problem: Scalable Coherence

* Available architectures:
— Accelerators: 100s of cores, TFLOPS, no coherence
— CMPs: <10s of cores, GFLOPS, HW coherence
— Multiple memory models on-die
 What devs want in heterogeneous CMPs:
— Hardware caches (locality)
— Single address space (marshalling)
— Minimal changes to current practices

e Accelerator scalability w/CMP memory model




Baseline Architecture

1024-core Processor Organization

Directory Unordered Multistage Interconnect

: /1 1 1 1
Directory y i
Controller |]/ : Cs) |Cq) |C;) uster, ce e Cluser;,c | |(Cluster;,,
| L2cache
N leEEE
(To Interconnect) Rigel Cluster

e Variant of the Rigel Architecture
e 1024-core CMP, HW caches, single address space, MIMD

ngel JLLLINOILS W !

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN




Opportunity: HW_ v. SW__ Shootout

1.4x
1.2 x
1.0x -
0.8x -
0.6x -

0.4x -

0.2x -

0.0x -

Runtime Normalized to IdealSWcc

cg dmm gjk sobel kmeans mri  march heat stencil

M Ideal SWcc B Best SWcc (of 4 policies) @ Full Directory (ideal on-die)

 Note: Lower bars are better
 Question: Can we leverage both HW+SW protocols?

* SWcc based on the Task-centric Memory Model [Kelm et al. PACT’09][Kelm et al. IEEEMicro’10]

QigelILLINOIS John H. Kelm 8

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN




Opportunity: Network Traffic Reduction

] _
H ! @ Read Releases

[ Probe Responses

B Software Flushes

O Cache Evictions

O Uncached/Atomic Operations

O Instruction Requests

@ Write Requests

Relative Number of Messages

B Read Requests

SWcc
HWcc
SWecc
HWcc

cg dmm gjk heat |kmeans| mri sobel | stencil

 SW_ w/baseline arch (left), HW_  ww/DIRr, (right)
* SW,_: Fewer L2 messages in network, some flush overhead
* HW,_.: Extraneous msgs for unshared data (Wrgeq e ROgeease)

Qigel ][ ILLINOLS John H. Kelm S

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN




Opportunity: Reduce Directory Utilization

250K — Max. possible entries
|

200K

150K - @ Stack

B Heap/Global
m Code

100K -

50K -
= Maximum Allocated

Average # Directory
Entries Allocated

oK -

6 & & Q& S Q@ >N
C NEPA RN <<’(J’b
S T EFE T F

Q
0¥ &
<&

NN
e Not all entries used =2 Wasted die area

For many, 256K maximum never reached (red line)

Observations:
1. Use SW_ when possible to reduce network traffic
2. Build smaller sparse directory for common case

Qigel ][ ILLINOILS John H. Kelm 10

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN




COHESION: Toward a Hybrid Memory Model
\

e Support for coherence domain transitions
1. Protocol for safe migration SW_ <~ HW,__ R

2. Minor architecture extensions

e Motivation:

A

HW_.: Supports arbitrary sharing, no SW overhead

L HW_.: Area + message overhead
ASWCC: Removes HW overheads + design complexity

4 SW_.: Flush overhead + coherence burden on SW

l@l I LLINO]IS John H. Kelm 11

IIIIIIIIIIIIIIIIIIIIIIIIIII -CHAMPAIGN




Protocol Synthesis

Immutable -
Wim Clean SW-to-HW Invalid
SWe, Transitions HW,
WrRe
ST g
WrRel

Private Private -
(Clean) (Dirty) Modified
SWPC SWPD

Synchronize

(Per Word)

* Create a bridge between SW__and HW __
* Leverage existing HW_.and SW__techniques

geIILLINOIS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

John H. Kelm 12




COHESION Architecture

Coarse-grain Fine-grain
Sparse Directory Region Table Region Table
(One per L3$ bank) (Global Table) (Strided across L3 banks)
et Mo W Winz Wit Se‘;?ﬁ‘;m > 0x00000000
° stack
set; —k\ segment
| T global base_addr g | coherence 16 MB table
- data bit vectors 4 GB
set, , sharers tag I/M/S (1 bit/line in memory
set, : : memory)
add e alio OxFFFFEOOO

e Extension to baseline directory protocol
— Addition 1: Region table/bit vector in memory
— Addition 2: One bit/line in the L2 cache (not shown)

e SW writes table = COHESION controller exec’s transition

picel [LLLLINOLS o eim 1




Example Software =2 Hardware Transitions

DIRECTORY DIRECTORY
CACHE, MEMORY  STATE CACHE,  CACHE, MEMORY  STATE

A|B AlB| ICLC

CACHE,

case2 ([A[B||A|B||A|B A|B||A|B||A|B Slala]

_____i______

* App. initiates transitions between SW_. and HW__
e COHESION controller probes L2’s to reconstruct state
» See paper for other cases and HW,_. =2 SW_,

#oe|[@LLLINOTLS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN




Static COHESION Example (1 of 3)

----------------------------------------------------------------------------------------

|-|w d
Data regions for c (reader) ? HW, (reader).
two grid blocks . [ HW, (writer) . HW (writer)
from a 2D stencil W, '
computation (private) |

.
Pe e R RN RN R R RN Fannnnn s nn s n s nnnnnnnnnnnnnn e

 COHESION provides static partitioning of data

* (Large) read-only/private regions SW__
* (Small) shared regions HW __

Q[gel J§LLLINOLS oo

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

15



Dynamic COHESION Example (2 of 3)

Parallel Sort (on four cores)

_9 I:)O
i
SWe, & HWee <P (Unsorted)
SW_ Data I
HW.__ Data P!o P!l
1 1
1. Parallel Quicksort P, i P, i P, i P,

2. Sequential Selection

Sort (Phase 0) _ __ _ _b——— _F — &_ — _E_ _____ ,_ — _$ ______

3. Sequential Selection cee cee | P
Sort (Phases 1-N) | : :

4. Result Visible to All \ SI | ¢ l{

(Sorted)
ngel II ILLINOILS John H. Kelm 16

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN




System SW COHESION Example (3 of 3)

* Problem: Supporting multitasking w/SW__

e OS process creation workflow

1.

A S

Runtime allocates proc’s memory HW

Start new process

Process runs, migrates, SW_. <~ HW__ transitions
Exit process

Runtime makes allocated memory HW __

 COHESION enables: Migration, isolation, cleanup

o
i ‘:f-,:zs;vf"'m.
[ | N |




Network Message Reductions

M Probe Responses

@ Read Releases

Il Software Flushes

B Cache Evictions

B Uncached/Atomics

@ Instruction Requests

o =
(€] o
—
I E— — —
——
——
I E— — —

Relative Number of Messages

B Write Requests
Ol cl=wm =IOl clxms = O Cclxwml =IOV Ccxm = OOIclxms =" O Ccl=w"l=IOlCc=m = OQOlcl=I=
= 2lgle 233 g2 28 gz ggle g8 8=z gele= 3L gl MHEReadRequests
Plelg g h a5 g|P g 8P e gl eg 8P e g g P els g P egl s
O O O O O O O O
Q|| Q|| Q|3 |2 o3| Q|| IR I IR
822 |822 (8% [82% (823 [82% (823 (822
cg dmm gjk heat kmeans mri sobel stencil

 HW,_Real: HW_-only w/sparse directory used by COHESION
 HW_Ideal: Full on-die directory
_» Benefit: lessens constraints on network design

Qi_gel 1 ILLINOLS John H. Kelm 138

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN




Directory Size Sensitivity

— 8.0x 8.0x — cg

3 dmm

.S'-'- 7.0x 7.0x — ewgik

. 6.0x 6.0x — heat
> «l=kmeans

“E-’ 5.0x 5.0x — a@mmri

— al=sobel

E 40x aox — o0

3 stencil

oc

- 3.0x 3.0x

No2.0x - 2.0x f

£ L =gl
E 1.0x 1.0x

o

2 0.0x T T T T T ! 0.0x

16384 8192 4096 2048 1024 512 256 16384 8192 4096 2048 1024 512 256
Directory Entries per L3 Cache Bank Directory Entries per L3 Cache Bank
(Without COHESION) (With CoHESION)

e Reduces pertf. cliffs in sparse directory designs

e Benefit: Smaller on-die coherence structures
ngel ][ ILLINOILS John H. Kelm 19

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN




Runtime: COHESION, SW ., HW

cc’/
7.09x 9.19x 9.21x 3.88x
2.0x

O
)
©
2 .
= _ 1.5x B Cohesion
© —
g .2 —
- U
S % 1.0x N W SWocc
L O
£ E HWccOpt
)
S 0.5x —
= 0 HWcc

0.0x -

cg dmm gjk heat kmeans mri sobel stencil

* Perf. close to SW__and full-directory HW__
e Reduce network/directory overhead w/o perf. loss
e Further HW_—2SW,__ optimizations possible

Qigel ][ ILLINOILS John H. Kelm 20

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN




Conclusions

e Why COHESION? CMPs w/multiple mem. models

e Usage scenarios identified
— System software/migratory tasks w/SW__
— App uses: Static, dynamic, and host+accel
— Optimization Path: Piecemeal HW_2SW__

 Hybrid memory model has potential
— Reduces strain on HW_ implementation

— Reduces network constraints

— Competitive performance




	Cohesion: A Hybrid Memory Model for Accelerators
	Chip Multiprocessors Today
	Chip Multiprocessors Tomorrow
	CMP Memory Model Choices
	Roadmap
	Problem: Scalable Coherence
	Baseline Architecture
	Opportunity: HWcc v. SWcc Shootout
	Opportunity: Network Traffic Reduction
	Opportunity: Reduce Directory Utilization
	Cohesion: Toward a Hybrid Memory Model
	Protocol Synthesis
	Cohesion Architecture
	Example Software  Hardware Transitions
	Static Cohesion Example (1 of 3)
	Dynamic Cohesion Example (2 of 3)
	System SW Cohesion Example (3 of 3)
	Network Message Reductions
	Directory Size Sensitivity
	Runtime: Cohesion, SWcc, HWcc
	Conclusions

